NABALOX® Bimodal Reactive Alumina

Influence of Reactive Alumina and Calcined Alumina on properties of free flowing castables

Dr. Christian Dünzen

Nabaltec AG, Schwandorf, Germany

Reactive Alumina is a well-established group of raw materials for refractory castables to improve their rheological behavior. In this article the influence of bimodal Reactive Alumina and Standard (<325#) calcined Alumina on workability, packing density and strength of alumina based castables is examined. It will be shown that there is a significant effect on water demand and apparent density of the castable, which is depending on the percentage of Reactive Alumina on the one hand and on the type of Reactive Alumina on the other hand. The effect of the Aluminas on setting time and cold crushing strength has shown to be insignificant in this set of experiments.

- Product properties
- High temperature resistance
- Optimized processability
- Bimodal
- Homogeneous

- Castable properties
- Very good flowability
- Low water demand
- High packing density
- Low porosity
- High corrosion resistance

1. Introduction

Castables are one major group in the field of unshaped refractories. They are often provided as a dry powder mix, water is added prior to placing. The consistency of the castable should allow pouring the refractory into shape without cavities and other defects. Hydration of cement (usually Calcium-Aluminate-Cement, CAC) provides a temporary bond in order to remove the mold before heating up. To improve the hot properties of the refractories, there are two trends going on since several decades:

- Reduction of water content
- Reduction of cement (leading to low cement castables and ultra low cement castables)

The reduction of water leads to a higher packing density and thus lower porosity of the refractory [1]. However, it is limited to the need for a certain consistency. The reduction of cement can lead to higher refractoriness due to CaO-reduction. However, cement reduction is limited because of the need for a proper early strength. What's more, a relation between porosity and strength links cement reduction to water reduction. Reduced porosity will lead to higher strength and thus, a lower demand for cement addition [2]. The key to achieve a good workable consistency is particle size optimization. Andreassen's packing model is a proper tool to visualize a castable's cumulative particle size distribution, enabling the engineer to adjust the recipe purposefully [3]. Especially modern bimodal Reactive Aluminas (RA) with primary crystal sizes of 2 µm and 0.5 µm have the ability to fill the smallest gaps between the cement particles (~ 10 µm) and common matrix fines like calcined -325# - Aluminas. Consequently, the use of bimodal Reactive Alumina leads to increase of particle packing density by obtaining good flowing properties already at very low water contents of the castable. [4,5] This effect results in higher strength, lower high temperature shrinkage and better resistance to corrosion and infiltration of corrosive media like steel making slag. The application of superplasticizers plays a crucial role in the extensive use of ultrafine Aluminas [6].

The experiments described in this paper have been designed to illustrate the effect of two systematic variations of a castable's formulation.

- To screen the amount of bimodal Reactive Alumina from 2 % to 13 %.
- To make a comparison between two wellestablished bimodal Reactive Aluminas on the one hand and a newly developed bimodal Reactive Alumina, that is designated to achieve lowest viscosity in free flowing castables, on the other hand.

Experimental procedure Raw material choice

The test castables where formulated with sintered alumina aggregates (Tabular Alumina, TA, Alfa Tab, Silkem Slovenia), Calcium aluminate cement (CAC, Secar 71, Imerys Aluminates, France) and Calcined and Reactive Alumina (CA and RA, **NABALOX®** Nabaltec AG, Germany). As a super plastisizer a Polyacrylate (PAE, Viscocrete 225 P, Sika, Germany) was used.

2.2. Castable formulation

For the first variation, four castable formulations where created (see table 1), by subsequently reducing the amount of RA from 13 % to 2 % and at any one step increasing the amount of CA and TA. What's more, from formulation 2 to 3, the TA size 0 - 0.3 mm was eliminated and CAC was increased from 3 % to 5 %. This was done in order to compensate the strength breakdown resulting from RA-reduction.

Table 1:	Castable formulations according to the
	first variation

Formulation		1	2	3	4
TA 3 – 6 mm	[%]	24	24	24	24
TA 1 – 3 mm	[%]	16	16	16	16
TA 0.5 – 1 mm	[%]	15	15	15	15
TA – 0.5 mm	[%]	7	8	11	11
TA – 0.3 mm	[%]	5	6		
TA – 325#	[%]	12	14	15	15
CAC	[%]	3	3	5	5
CA	[%]	5	7	8	12
RA	[%]	13	7	6	2
PAE	[g/100g]	0.1	0.1	0.1	0.1

		Mati	trix A Matrix B		rix B	Matrix C		
		CA (-325#)	RA	CA (-325#)	RA	CA (-325#)	RA	
		NO 315	NO 530	NO 115 TC	NO 660	NO 115 TC	NO 652	
D ₁₀	[µm]	0.8	0.3	1.0	0.4	1.0	0.5	
D ₅₀	[µm]	3.2	1.6	4.5	1.9	4.5	3.1	
D ₉₀	[µm]	8.5	5.0	13	5.0	13	5.5	
S _{spec.}	[m²/g]	1.2	4.0	0.9	2.8	0.9	2.6	
AI_2O_3	[%]	99.6	99.8	99.6	99.8	99.6	99.8	
Na ₂ O	[%]	0.30	0.10	0.30	0.10	0.30	0.10	
SiO ₂	[%]	0.02	0.02	0.01	0.02	0.01	0.02	

Table 2: Physical and chemical properties of the used CA and RA grades, according to the second variation

For the second variation, three combinations of one -325# - grade Alumina with one bimodal Reactive grade Alumina were predefined as Matrix A – C, as illustrated in table 2: Matrix A, promising lowest water demand, and Matrix B in expectance of slightly higher water demand. Matrix C contains the coarsest bimodal RA and thus this matrix should need the highest amount of water. It is expected that the properties of both matrices B and C are still reasonable.

Each matrix is tested in each formulation resulting in a test setup of 12 castables.

2.3. Raw material characterization

All Calcined and Reactive Alumina grades were characterized with regard to grain size distribution (laser diffraction, Cilas 1064, Micromeretics), specific surface (S_{spec}, BET, DIN ISO 9277), chemical composition (ICP/OES, SpectroBlue, SPECTRO Analytical Instruments GmbH).

The powder parameters are highlighted in table 2, figures 1 and 2 illustrate the particle size distributions. For matrix Α. both. the -325# - grade CA and the RA is finer and more reactive, in comparison to matrix B and C. For CA the difference can be described as follows: The D₉₀ of NABALOX® NO 315 is significantly lower, compared to NO 115 TC, which indicates the better disaggregation of NO 315. This property promises lower water demand due to a lower amount of remaining aggregates. For the RA grades, the difference is rather obvious in D₅₀ and S_{spec.} for NO 530, D₅₀ is lower and S_{spec} is higher than for NO 660 and NO 652, in which NO 652 differs more than NO 660. This indicates a higher amount of submicron-particles able to fill the smallest gaps between the matrix particles and thus replacing water. Those differences promise lower water demand and lower viscosity for the formulations containing matrix A.

Figure 1: Particle size distributions of the CAgrades

Figure 2: Particle size distributions of the RAgrades

2.4. Castable tests

Spreading of the castables was measured under free flowing conditions according to ISO 1927-4:2012 and strength evolution during the first 24 h was monitored by measuring the ultra sound velocity (IP8-measurement system, Ultratest GmbH). The time to exceed a sound velocity of 1500 m/s was defined as the setting time. The castable was vibrated into cylindrical molds having a diameter of 36 mm and a height of 36 mm. Samples have been hydrated in a climate chamber at 20°C and 90 % relative atmospheric humidity for 24 h before unmolding. Cold compressive strength of the cylinders was measured according to DIN EN 196-1:2005-05 after drying for additional 24h at 110°C ($CCS_{110°C}$). Apparent density was calculated from the mass and the volume of the cylindrical samples after drying.

3. Results and discussion 3.1. Water content

Tables 3 and 4 give an overview on the results. The first and most important result is the effect on water demand. The water content of each castable had to be evaluated separately in order to achieve the same consistency, which was defined as a spreading between 100 % and 130 %.

			•	•	I.
	matrix A				
Table 3:	Castable prope	erties a	chieve	d with	

Formulation		1	2	3	4
Water demand	[ml/100g]	3.8	3.9	4	4.4
Spreading	[%]	125	110	120	115
Setting time	[min]	600	440	170	415
CCS _{110°C}	[MPa]	73	109	97	83
Apparent density _{110°C}	[g/cm³]	3.31	3.25	3.26	3.25

Table 4:	Castable	properties	achieved	with
	matrix B			

Formulation		1	2	3	4
Water demand	[ml/100g]	4.0	4.2	4.4	5.2
Spreading	[%]	110	120	110	110
Setting time	[min]	220	210	180	340
CCS _{110°C}	[MPa]	61	59	74	70
Apparent density _{110°C}	[g/cm ³]	3.29	3.25	3.20	3.18

Table 5:	Castable properties achieved with
	matrix C

Formulation		1	2	3	4
Water demand	[ml/100g]	4.6	4.8	5.0	5.2
Spreading	[%]	100	105	110	110
Setting time	[min]	590	590	610	590
CCS _{110°C}	[MPa]	54	52	79	67
Apparent density _{110°C}	[g/cm³]	3.22	3.20	3.17	3.15

3.2. Influence of Reactive Alumina percentage (first variation)

The Reactive Alumina content is an essential tool to adjust a castable's water demand in a wide range. As shown in figure 3, the dependence is not linear. For Matrix C the slope is low, as the water demand is only reduced from 5.2 % to 4.6 %. NO 660 (Matrix B) is twice as effective, by reducing the water demand from 5.2 % to 4.0 % by the same addition. However, NO 530 (Matrix A) is approximately twice as effective as NO 660, as a water demand of 4.0 % is achieved with only 6 % of Reactive Alumina, instead of 13 %. Below a water content of 4.0 % the curve of Matrix A flattens out and no significand reduction of water demand is further possible.

Figure 3: Water demand of the test-castables in dependence of the Reactive Alumina content

What's more, a clear dependency between water content and apparent density can be observed independently from the matrix. Figure 4 shows an almost linear increase of apparent density when water demand is reduced.

Figure 4: Apparent density of the test castables in dependency of the water demand

From these results, the following conclusion can be made: Increasing the Reactive Alumina percentage in a castable's formulation results in a continuous improvement of properties. Even though increasing the Reactive Alumina content from 7 % to 13 % will allow only 0.1 % - 0.2 % water reduction, a noteworthy increase in density will be the result, followed by numerous positive effects like increase of hot and cold mechanical properties, infiltration resistance, wear resistance, just to name a few.

3.3. Influence of Calcined and Reactive Alumina grade (second variation)

As can be read from table 2, both Aluminas, CA and RA, respectively, have lower particle sizes for matrix A in comparison to matrices B and C, and thus, matrix A promises lowest water demand. This expectation is fulfilled for all formulations, as can be seen in figure 5. Furthermore, the density increase, as an indirect consequence of the Reactive Alumina exchange is obvious, illustrated in figure 6.

Figure 5: Influence of the matrix on water demand of the test castables

Figure 6: Influence of the matrix on apparent density of the test castables

It is assumed, that there is an optimum amount of submicron particles in order to provide best flow and highest packing density at lowest water demand. Figure 6 leads to the conclusion, that this optimum is already exceeded, if 13 % of **NABALOX**[®] NO 530 is used, while 13 % of NO 660 and NO 652 do still not provide lowest water demand.

From another point of view, as long as lowest water demand is not required, a finer Reactive Alumina can often provide the same properties as matrix a coarser one, but with a lower content. This offers a tool to develop more cost efficient formulations with a reduced content of Reactive Alumina.

3.4. Cold crushing strength and setting time

No significant correlation between RA-content and CCS can be observed. The same applies for setting time. In this context, formulation 1 with matrix A should be classified as an outlier with an unexpected long setting time and low CCS. Only NO 652, (Matrix C) provides a significantly longer setting time over all RAcontents, which is an effect of the setting retarder that is already included in this Reactive Alumina. What's more, there is a jump in water demand from formulation 2 to formulation 3, not due to RA-content, but due to the total change of the castable's PSD. This jump theoretically would be accompanied by a strength decay, which is compensated by the increase in CACcontent, that's why no strength decay was observed here.

4. Summary

Reactive Alumina is a proper way to reduce water demand of castables and, as an indirect consequence, to increase the apparent density of the same. It could be shown, that although the water reducing effect is decreasing with higher percentages of Reactive Alumina, the apparent density continues to rise in a linear way. Besides the amount of Reactive Alumina it could also be shown, that the grade of Reactive Alumina has a similar effect. Instead of increasing the amount of Reactive Alumina, switching to a different, more reactive grade has the same effect on water demand as well as packing density and porosity.

References

 B. Myhre, Let's make a castable! Part I Refractories Applications and News 13 (2008), Number 3 (May/June), 16-24

- [2] D.M. Roy, et al., Optimization of strength in cement pastes Cement and Concrete Res. 5 (1975), 153-162
- [3] D. R. Dinger, et al., Particle Packing III Discrete versus Continuous Particle Sizes Interceram 41 (1992), No. 5, 332-334
- [4] R. Sarkar, et al., Effect of Alumina Fines on High Alumina Self-flow Low Cement Castables Refractories Worldforum 6 (2014), [1], 73-77
- [5] E. Chabas, et al., Improving flowability of LCC refractories using fine-ground alumina
 A. Cer. Soc. Bulletin 92 (2013), No. 9, 23-24
- [6] R. Kockegey et al., The Value of Additives in Refractory Castables - without Silica Fume Unitecr 2015, 14th Congr. Proc. Nr. 232, 2015